

Technical Working Group Meeting #2

Diving Deeper Part I

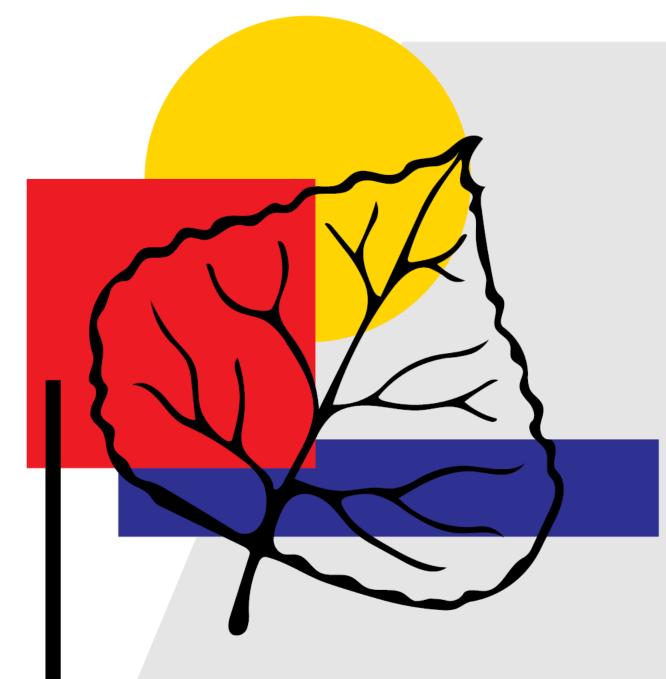
September 18, 2019, 4pm

Technical Working Group

Meeting #2 – Agenda Items

- I. Introduction and Welcome
 - Review ground rules and updated strategic questions
- II. Meeting I Follow Up Additional Metrics Fleet Mix
 - Review requested metrics
- III. Values Scorecard Exercise
 - Ranking Available Aircraft to Nosie, Emissions and Community Values
- IV. Forecast Overview and Presentation
 - Methodology and Approach to Forecast, Linda Perry, LeighFisher
- V. Lighting Round and Discussion
 - Key Takeaways and Considerations
- VI. Next Meeting

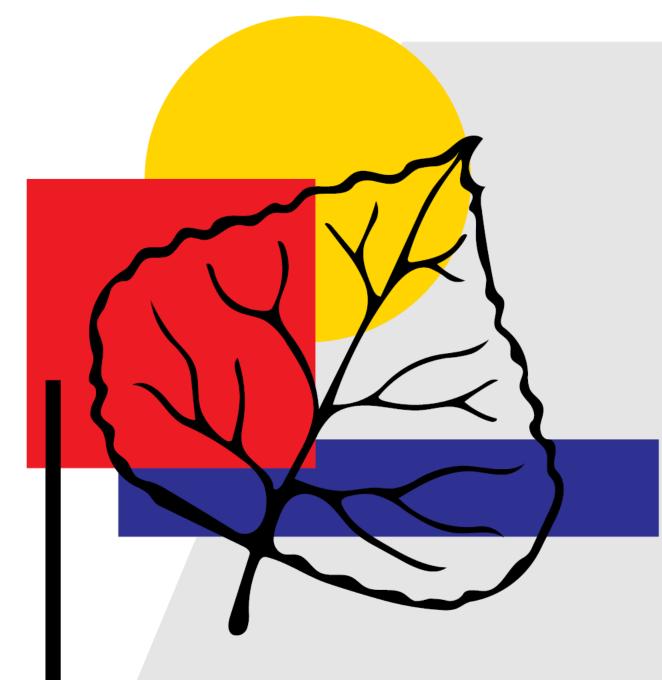
Deliverables by November to Report Back to the Airport Vision Committee


I. Design Aircraft Values Scorecard

- Rank available aircraft to community values and goals
- II. Answers to Strategic Questions
 - Preferred Design Aircraft, ADG, Green and Carbon Neutral Airfield
 - Identify areas of conflict and areas of group alignment

III. Success Factors for TWG

- Community Character Lens
- IV. Other Recommendations | Considerations
 - Other factors, comments, captured dialogue


Reference Materials

Reference Materials

How do these reference material documents help us guide a discussion and recommendation?

- Aviation Activity Forecasts
- Trends: Rolls Royce Presentation
- Updated Available Aircraft Metrics

Aircraft Metrics & Scorecard

AVC Guiding Principles

- Reduce overall airport emissions (aircraft & facilities) by 20-30% [Target for Overall Airport Emissions]
- Reduce noise levels by 20-30% [Target for Airport Noise Intensity]
- Accommodate limited growth [Airport Commercial Enplanement Target of . 8%]

ASE COMMUNITY VALUES SUMMARY

- Safety in the Air and on the Ground
- Adaptable, Flexible, Future-Proof
- Environmental Responsibility
- Community Character Reflect local culture and values
- Economic Vitality
- Warm and Welcoming
- Design Excellence
- Efficiency an airport that works well
- Preserve High Quality of Life
- Convenient and Easy Ground Transportation

Noise

	Manufacturer	Model					Wingspan (ft.)	Range (NM)	MTOW		ICAO Noise		Noise Score	Operations for 2018 Enplanements
ADG			Physical Class (Engine)	AAC	Approach Speed (Vref)	Seating				EPNLdB Noise Level Lateral/Full- Power	EPNLdB Noise Level Approach	EPNLdB Noise Level Flyover		
11	Bombardier	CRJ 100/200/440 LR (CL-600-2B19)	Jet	С	140	50	68.67	1,650	53,000	82.4	92.2	77.7		16,452
Ш	Bombardier	Dash 8 Q400	Turboprop	С	125	76	93.25	1,100	65,200	84.9	94.0	77.8		10,823
III	Airbus	A220-100	Jet	С	130	109	115.08	3,400	134,000	88.0	91.5	78.8		7,547
Ш	Airbus	A320 NEO Sharklet	Jet	С	136	157	117.45	3,500	174,165	86.4	92.4	80.5		5,876
Ш	Airbus	A220-300	Jet	С	135	140	115.08	3,350	149,000	87.5	92.4	80.3		5,876
Ш	Boeing	737-MAX 8	Jet	D	142	178****	117.83	3,550	181,200	88.2	94.0	80.9		4,621
Ш	Bombardier	CRJ 550 (Same airframe as CRJ-700)	Jet	С	135	50	76.27	1,000	65,000	89.5	92.6	82.4		16,452
11	Bombardier	CRJ 700/701/702 LR	Jet	С	135	70	76.27	1,400	77,000	89.5	92.6	82.4	2	11,751
111	Embraer	E 190 Standard	Jet	С	124	96**	94.25	2,450	105,359	92.2	92.3	82.9		8,569
111	Airbus	A319-100 Sharklet	Jet	С	126	132	117.45	3,750	168,653	91.4	92.9	83.3		6,426
111	Embraer	E 170 Standard	Jet	С	124	69	85.42	2,150	82,012	92.0	94.5	81.3		11,921
Ш	Embraer	EMB 190-E2	Jet	С	124	97	110.70	2,850	124,341	92.3	92.3	83.8		8,480
Ш	Airbus	A320-200 Sharklet	Jet	С	136	157	117.45	3,300	171,961	90.9	93.6	84.1		5,484
Ш	Embraer .	EMB 195-E2	Jet	С	124	120	115.15	2,600	135,584	9 <mark>2</mark> .3	92.7	84.9		6,855
111	Boeing	737-700 with winglets	Jet	С	130	137	117.42	4,400	154,500	93.1	95.9	83.5		6,528
111	Embraer	EMB 175 LR, extended wingtips	Jet	С	124	76	93.92	2,150	85,517	91.8	95.1	93.0		10,823
Ш	Mitsubishi	M100 SpaceJet	Jet	С		76	91.30	1,910	86,000	Infor	Information not available			10,823
Ш	Mitsubishi	M90 SpaceJet	Jet	С		88*	95.83	2,040	94,358	Infor	Information not available			9,348
Ш	Embraer	EMB 175-E2	Jet	С	124	80	101.70	2,000	98,767	Information not available		ailable		10,282
Ш	Boeing	737-MAX 7 (same engine as MAX 8)	Jet	D	142	153***	117.83	3,850	177,000	Information not available			5,376	

Notes:

8

Noise and Emissions Source - ICAO Certification Database, August 2019 | HMMH, August 2019; Per-passenger interpretation - Kimley-Horn August 2019.

Operations 2018 = Actual Enplanements at 70% load factor. Future = 2028 Enplanments at 0.8% Annual Growth and 70% load factor

Aircraft Load and Dimensions from FAA Aircraft Design Characteristics Database OCT 2018

ASE Operational Capability from August 2018 Aircraft Feasibility analysis done by Alec Seybold - Flight Tech Engineering

Range is nominal stated by manufacturer

* Single-class seating as configured for ANA for use in Japan. Range is 76 to 92

** Dual-class seating per Manufacturer

*** Dual-class range 138 to 153

**** Dual-class range 162 to 178

1 = Measurably meets community goals 2 = Generally maintains current condition

3 = Worsens current condition

Emissions

											ICAO Emissions										
ADG	Manufacturer	Model	Physical Class (Engine)	AAC	Approach Speed (Vref)	Seating	Wingspan (ft.)	Range (NM)	мтоw	Fuel per LTO Cycle (kg) per Passenger	Fuel Compared to CRJ-700	CO2 Total Mass LTO (g) per Passenger	CO2 Compared to CRJ-700	NOx Total Mass LTO (g) per Passenger	NOx Compared to CRJ-700	NOx Takeoff	NOx Climbout	NOx Approach	NOx Idle	NOx Total (All Segments)	Emissions Score
III	Airbus	A220-300	Jet	C	135	140	115.08	3,350	149,000	1.98	59%	14.33	40%	25.08	85%	0.24	0.19	0.10	0.06	0.58	
111	Airbus	A320 NEO Sharklet	Jet	С	136	157	117.45	3,500	174,165	1.99	<mark>60%</mark>	22.00	62%	19.13	65%	0.16	0.13	0.06	0.03	0.37	
III	Boeing	737-MAX 8	Jet	D	142	178****	117.83	3,550	181,200	1.99	60%	13.52	38%	32.01	108%	0.27	0.13	0.06	0.03	0.48	
III	Airbus	A320-200 Sharklet	Jet	C	136	157	117.45	3,300	171,961	2.57	77%	27.55	77%	31.17	106%	0.16	0.13	0.07	0.04	0.40	
111	Embraer	EMB 195-E2	Jet	С	124	120	115.15	2,600	135,584	2.63	78%	53.83	151%	26.17	89%	0.16	0.13	0.07	0.03	0.39	
III	Airbus	A220-100	Jet	С	130	109	115.08	3,400	134,000	2.71	81%	17.44	49%	36.83	125%	0.17	0.14	0.07	0.03	0.40	
III	Airbus	A319-100 Sharklet	Jet	С	126	132	117.45	3,750	168,653	2.89	86%	39.96	112%	31.07	105%	0.12	0.08	0.06	0.03	0.29	
III	Boeing	737-700 with winglets	Jet	С	130	137	117.42	4,400	154,500	2.99	89%	47.66	134%	32.15	109%	0.15	0.12	0.06	0.03	0.37	
III	Embraer	EMB 175 LR, extended wingtips	Jet	С	124	76	93.92	2,150	85,517	3.23	96%	26.96	76%	30.34	103%	0.20	0.17	0.14	0.06	0.57	
III	Embraer	EMB 190-E2	Jet	С	124	97	110.70	2,850	124,341	3.23	96%	67.14	188%	31.81	108%	0.20	0.17	0.09	0.04	0.49	
111	Embraer	E 190 Standard	Jet	С	124	96**	94.25	2,450	105,359	3.24	97%	68.39	192%	31.59	107%	0.20	0.17	0.09	0.04	0.49	
II	Bombardier	CRJ 100/200/440 LR (CL-600-2B19)	Jet	С	140	50	68.67	1,650	53,000	3.34	100%	67.00	188%	22.74	77%	0.23	0.20	0.14	0.08	0.65	
- Uu	Bombardier	CRJ 700/701/702 LR	Jet	с	135	70	76.27	1,400	77,000	3.35	100%	35.62	100%	29.50	100%	0.20	0.18	0.15	0.06	0.60	2
III	Embraer	E 170 Standard	Jet	C	124	<mark>6</mark> 9	85.42	2,150	82,012	3.57	107%	29.65	83%	33.63	114%	0.22	0.19	0.16	0.07	0.63	
Ш	Bombardier	CRJ 550 (Same airframe as CRJ-700)	Jet	С	135	50	76.27	1,000	65,000	4.69	140%	49.87	140%	41.30	140%	0.29	0.25	0.22	0.09	0.84	
Ш	Mitsubishi	M100 SpaceJet	Jet	С		76	91.30	1,910	86,000					Information	not available	2					
III	Mitsubishi	M90 SpaceJet	Jet	С		88*	95.83	2,040	94,358			0		Information not available							
III	Embraer	EMB 175-E2	Jet	С	124	80	101.70	2,000	98,767	,				Information not available							
Ш	Boeing	737-MAX 7 (same engine as MAX 8)	Jet	D	142	153***	117.83	3,850	177,000					Information not available						2	
Ш	Bombardier	Dash 8 Q400	Turboprop	С	125	76	93.25	1,100	65,200					Information not available		:					
																					1 = Measurably meets community g

Notes:

Noise and Emissions Source - ICAO Certification Database, August 2019 | HMMH, August 2019; Per-passenger interpretation - Kimley-Horn August 2019.

Operations 2018 = Actual Enplanements at 70% load factor. Future = 2028 Enplanments at 0.8% Annual Growth and 70% load factor

Aircraft Load and Dimensions from FAA Aircraft Design Characteristics Database OCT 2018

ASE Operational Capability from August 2018 Aircraft Feasibilty analysis done by Alec Seybold - Flight Tech Engineering Range is nominal stated by manufacturer

* Single-class seating as configured for ANA for use in Japan. Range is 76 to 92

** Dual-class seating per Manufacturer

*** Dual-class range 138 to 153

**** Dual-class range 162 to 178

ASPEN/PITKIN COUNTY AIRPORT

2 = Generally maintains current con

3 = Worsens current condition

Ability to Safely Operate at ASE

							l I			ASE Operational Capability		pability	
ADG	Manufacturer	Model	Physical Class (Engine)	AAC	Approach Speed (Vref)	Seating	Wingspan (ft.)	Range (NM)	мтоw	ASE Missed Approach Capable? Winter	ASE Missed Approach Capable? Summer	Significant Wt Penalty at ASE?	ASE Operation Capability Score
II	Bombardier	CRJ 550 (Same airframe as CRJ-700)	Jet	С	135	50	76.27	1,000	65,000	Y	Y	N	
	Airbus	A220-100	Jet	С	130	109	115.08	3,400	134,000	Y	Y	N	
	Boeing	737-MAX 7 (same engine as MAX 8)	Jet	D	142	153***	117.83	3,850	177,000	Y	Y	N	
111	Airbus	A319-100 Sharklet	Jet	С	126	132	117.45	3,750	168,653	Y	Y	N	
III	Bombardier	Dash 8 Q400	Turboprop	С	125	76	93.25	1,100	65,200	Y	Y	N	
II	Bombardier	CRJ 700/701/702 LR	Jet	С	135	70	76.27	1,400	77,000	Y	Y	Y	2
III	Embraer	EMB 175 LR, extended wingtips	Jet	С	124	76	93.92	2,150	85,517	Y	Marginal	Y	
	Boeing	737-700 with winglets	Jet	С	130	137	117.42	4,400	154,500	Y	Marginal	Y	
	Boeing	737-MAX 8	Jet	D	142	178****	117.83	3,550	181,200	Y	Marginal	Y	
	Bombardier	CRJ 100/200/440 LR (CL-600-2B19)	Jet	С	140	50	68.67	1,650	53,000	Charter	N	Y	
	Airbus	A220-300	Jet	С	135	140	115.08	3,350	149,000	Unknown	Unknown	Unknown	
III	Mitsubishi	M100 SpaceJet	Jet	С		76	91.30	1,910	86,000	Unknown	Unknown	Unknown	
III	Mitsubishi	M90 SpaceJet	Jet	С	2	88*	95.83	2,040	94,358	Unknown	Unknown	Unknown	
	Embraer	EMB 175-E2	Jet	С	124	80	101.70	2,000	98,767	Unknown	Unknown	Unknown	
111	Embraer	EMB 195-E2	Jet	С	124	120	115.15	2,600	135,584	Unknown	Unknown	Unknown	
	Embraer	E 170 Standard	Jet	С	124	69	85.42	2,150	82,012	Unknown	Unknown	Unknown	
III	Embraer	E 190 Standard	Jet	С	124	96**	94.25	2,450	105,359	Unknown	Unknown	Unknown	
	Embraer	EMB 190-E2	Jet	С	124	97	110.70	2,850	124,341	Unknown	Unknown	Unknown	
	Airbus	A320 NEO Sharklet	Jet	C	136	157	117.45	3,500	174,165	Unknown	Unknown	Unknown	
111	Airbus	A320-200 Sharklet	Jet	С	136	157	117.45	3,300	171,961	Unknown	Unknown	Unknown	

Notes:

1 = Measurably meets community goals

2 = Generally maintains current condition

3 = Worsens current condition

Noise and Emissions Source - ICAO Certification Database, August 2019 | HMMH, August 2019; Per-passenger interpretation - Kimley-Horn August 2019. Operations 2018 = Actual Enplanements at 70% load factor. Future = 2028 Enplanments at 0.8% Annual Growth and 70% load factor

Aircraft Load and Dimensions from FAA Aircraft Design Characteristics Database OCT 2018

ASE Operational Capability from August 2018 Aircraft Feasibility analysis done by Alec Seybold - Flight Tech Engineering

Range is nominal stated by manufacturer

* Single-class seating as configured for ANA for use in Japan. Range is 76 to 92

** Dual-class seating per Manufacturer

*** Dual-class range 138 to 153

**** Dual-class range 162 to 178

Ability to Limit Operations Growth

						1				Operatio	ons Data	
ADG	Manufacturer	ufacturer Model Class (Engine)		AAC	Approach Speed (Vref)	Seating	Wingspan (ft.)	Range (NM)	мтоw	Annual Ops 2018	Annual Ops Future	Ability to limit Operations Score
III	Boeing	737-MAX 8	Jet	D	142	178****	117.83	3,550	181,200	4,621	5,005	
III	Boeing	737-MAX 7 (same engine as MAX 8)	Jet	D	142	153***	117.83	3,850	177,000	5,376	5,822	
	Airbus	A320-200 Sharklet	Jet	C	136	157	117.45	3,300	171,961	5,484	5,939	2
III	Airbus	A220-300	Jet	С	135	140	115.08	3,350	149,000	5,876	6,363	
III	Airbus	A320 NEO Sharklet	Jet	С	136	157	117.45	3,500	174,165	5,876	6,363	
III	Airbus	A319-100 Sharklet	Jet	C	126	132	117.45	3,750	168,653	6,426	6,959	
i III	Boeing	737-700 with winglets	Jet	С	130	137	117.42	4,400	154,500	6,528	7,070	
	Embraer	EMB 195-E2	Jet	С	124	120	115.15	2,600	135,584	6,855	7,423	
III	Airbus	A220-100	Jet	С	130	109	115.08	3,400	134,000	7,547	8,173	
III	Embraer	EMB 190-E2	Jet	C	124	97	110.70	2,850	124,341	8,480	9,184	
	Embraer	E 190 Standard	Jet	С	124	96**	94.25	2,450	105,359	8,569	9,279	
	Mitsubishi	M90 SpaceJet	Jet	С		88*	95.83	2,040	94,358	9,348	10,123	
III	Embraer	EMB 175-E2	Jet	С	124	80	101.70	2,000	98,767	10,282	11,135	
III	Mitsubishi	M100 SpaceJet	Jet	C		76	91.30	1,910	86,000	10,823	11,721	
III	Embraer	EMB 175 LR, extended wingtips	Jet	С	124	76	93.92	2,150	85,517	10,823	11,721	
III	Bombardier	Dash 8 Q400	Turboprop	C	125	76	93.25	1,100	65,200	10,823	11,721	
11	Bombardier	CRJ 700/701/702 LR	Jet	С	135	70	76.27	1,400	77,000	11,751	12,726	2
III	Embraer	E 170 Standard	Jet	C	124	69	85.42	2,150	82,012	11,921	12,910	
11	Bombardier	CRJ 100/200/440 LR (CL-600-2B19)	Jet	С	140	50	68.67	1,650	53,000	16,452	17,816	
11	Bombardier	CRJ 550 (Same airframe as CRJ-700)	Jet	С	135	50	76.27	1,000	65,000	16,452	17,816	

Notes:

11

1 = Measurably meets community goals

2 = Generally maintains current condition 3 = Worsens current condition

Noise and Emissions Source - ICAO Certification Database, August 2019 | HMMH, August 2019; Per-passenger interpretation - Kimley-Horn August 2019.

Operations 2018 = Actual Enplanements at 70% load factor. Future = 2028 Enplanments at 0.8% Annual Growth and 70% load factor

Aircraft Load and Dimensions from FAA Aircraft Design Characteristics Database OCT 2018

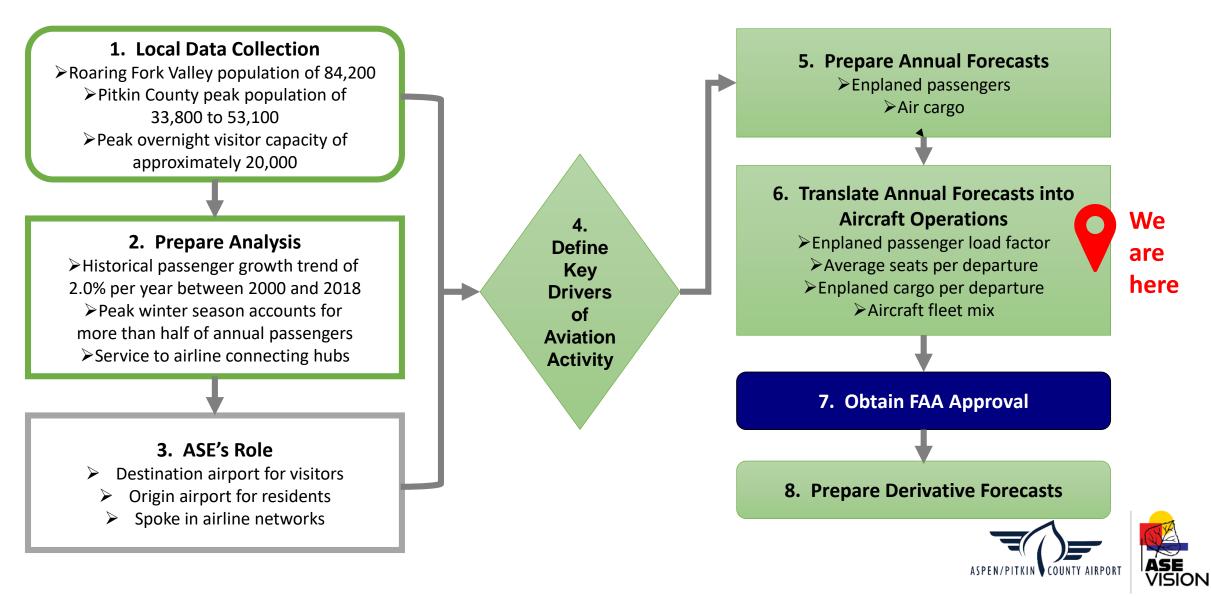
ASE Operational Capability from August 2018 Aircraft Feasibility analysis done by Alec Seybold - Flight Tech Engineering

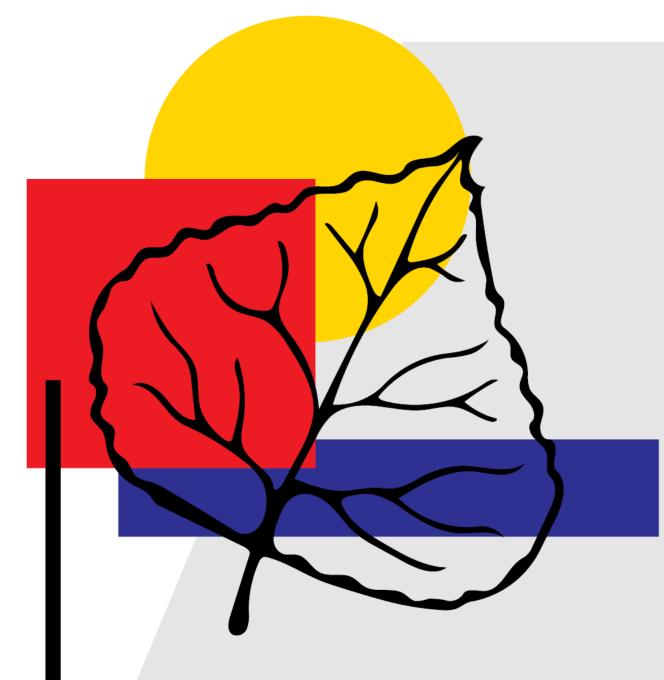
Range is nominal stated by manufacturer


 * Single-class seating as configured for ANA for use in Japan. Range is 76 to 92

** Dual-class seating per Manufacturer

*** Dual-class range 138 to 153


**** Dual-class range 162 to 178

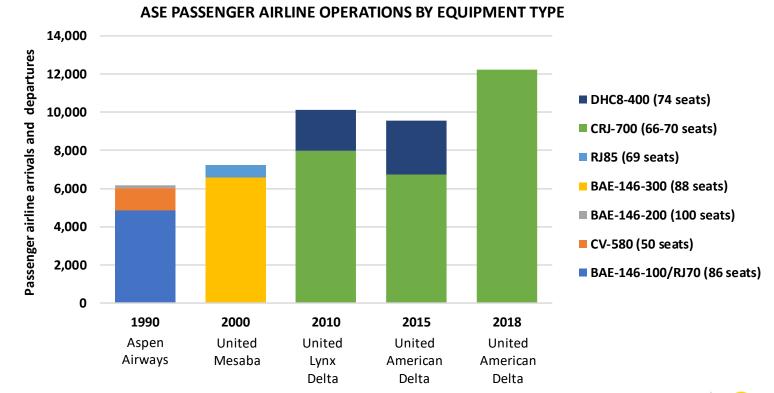


Forecast Approach for ASE

The key elements, decisions and input for preparing forecasts for planning

FAA Design Aircraft

What is a FAA Design Aircraft?


FAA Definition

"The critical aircraft is the **most demanding aircraft**

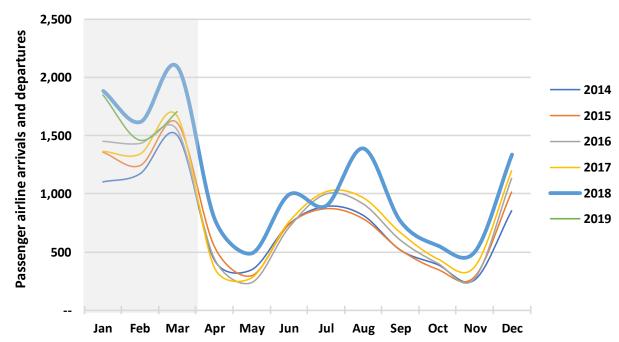
type, or grouping of aircraft with similar characteristics, that make regular use of the airport. **Regular use is 500 annual operations**,

including both itinerant and local operations but excluding touch-and-go operations. An operation is either a takeoff or landing."

Over time, ASE's Design Aircraft has changed with changes in airline fleets and service

Note: The terms Critical Aircraft, Design Aircraft, and Critical Design Aircraft are synonymous.

Sources: Federal Aviation Administration, Advisory Circular 150/5000-17, Critical Aircraft and Regular Use Determination, June 20, 2017, www.faa.gov. U.S. Department of Transportation, Schedule T100, online database, accessed September 2019.


15

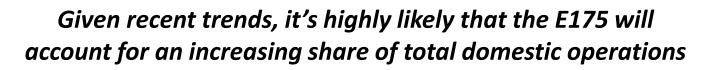
What Factors are Involved in the Critical FAA Aircraft Determination?

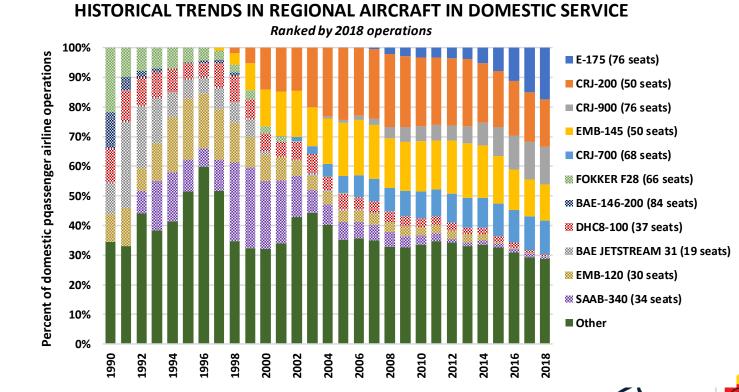
FAA Answer

"The existing Critical Aircraft determination requires documenting regular use of airport facilities. Documenting aeronautical activity may reflect specific seasonal operational characteristics of an airport (i.e., seasonal scheduled passenger service). Therefore, operations do not need to occur uniformly throughout a 12-month period."

More than 40% of ASE's passenger airline operations occur in January through March

ASE PASSENGER AIRLINE OPERATIONS BY MONTH


Note: The terms Critical Aircraft, Design Aircraft, and Critical Design Aircraft are synonymous.

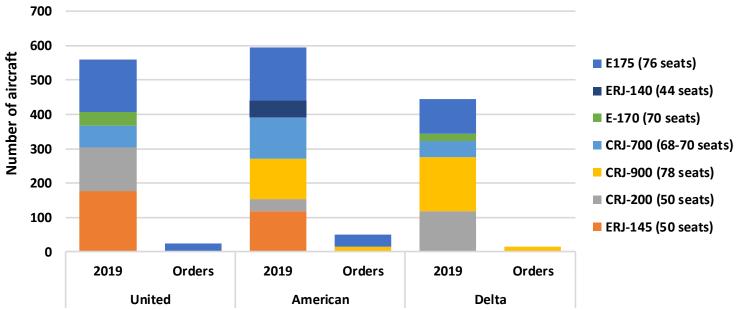

Sources: Federal Aviation Administration, Advisory Circular 150/5000-17, Critical Aircraft and Regular Use Determination, June 20, 2017, www.faa.gov. U.S. Department of Transportation, Schedule T100, online database, accessed September 2019.

What is the Distinction between the Existing versus Future FAA Design Aircraft?

FAA Answer

"The future Critical Aircraft is determined with an FAAapproved forecast that considers aircraft "highly likely" or "expected" to regularly use the airport...The future Critical Aircraft will often be different than the existing Critical Aircraft, given operational growth, the retirement of older aircraft types, and the introduction of new aircraft into service."

Note: The terms Critical Aircraft, Design Aircraft, and Critical Design Aircraft are synonymous.


Sources: Federal Aviation Administration, Advisory Circular 150/5000-17, Critical Aircraft and Regular Use Determination, June

20, 2017, www.faa.gov. U.S. Department of Transportation, Schedule T100, online database, accessed September 2019.

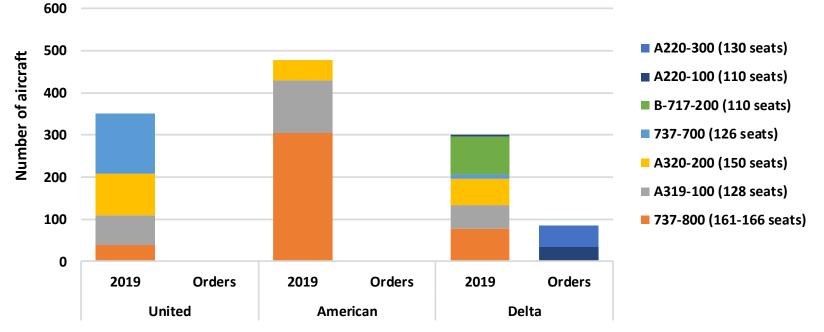
How is a Future FAA Critical Aircraft Determination Made?

FAA Answer

"The determination of a future Critical Aircraft is based on an FAA approval of the airport sponsor's forecast. Proper diligence and awareness of aircraft fleet trends is needed when establishing the future Critical Aircraft..." The E175 accounted for 25% of the combined regional aircraft fleets of United, American, and Delta in 2019

AIRLINE FLEETS AND AIRCRAFT ORDERS

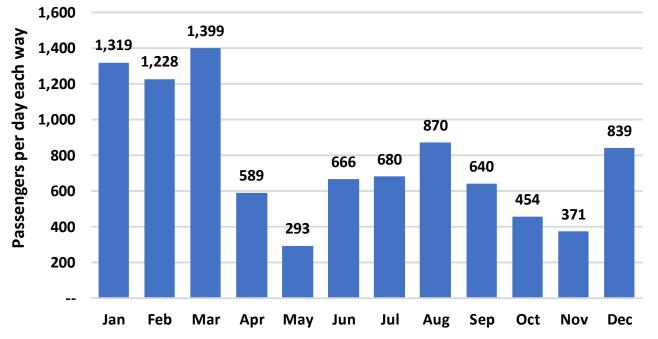
Note: The terms Critical Aircraft, Design Aircraft, and Critical Design Aircraft are synonymous.


Sources: Federal Aviation Administration, Advisory Circular 150/5000-17, Critical Aircraft and Regular Use Determination, June 20, 2017, www.faa.gov. U.S. Department of Transportation, Schedule T100, online database, accessed September 2019.

Small Narrowbody National Aircraft Trends

Airlines such as Delta are incorporating small narrowbody aircraft into their fleets to:

- Bridge the gap between the largest capacity regional aircraft (e.g., E-175 with 76 seats) and the newest narrowbody aircraft (e.g., B737-900 with 179 seats)
- Serve fast growing regional markets
- Replace aging small narrowbody aircraft such as the A319


Aspen Drivers of the Design Aircraft

What factors will influence the Design Aircraft for ASE?

- Annual Operations (regular use = 500 operations per year)
- Airlines serving ASE
- Airline aircraft fleets and aircraft orders
- Passenger base
- Seasonality of passenger traffic

The number of passengers per day each way during the peak season is more than twice that for the rest of the year

ASE PASSENGERS PER DAY EACH WAY IN 2018

Note: The terms Critical Aircraft, Design Aircraft, and Critical Design Aircraft are synonymous.

Sources: Federal Aviation Administration, Advisory Circular 150/5000-17, Critical Aircraft and Regular Use Determination, June

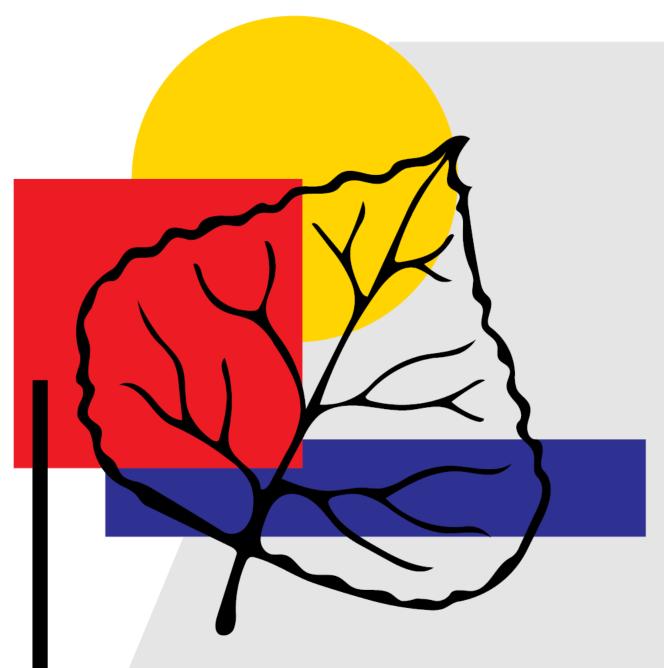
20, 2017, www.faa.gov. U.S. Department of Transportation, Schedule T100, online database, accessed September 2019.

ASE Passenger Base and Seasonality: 2018

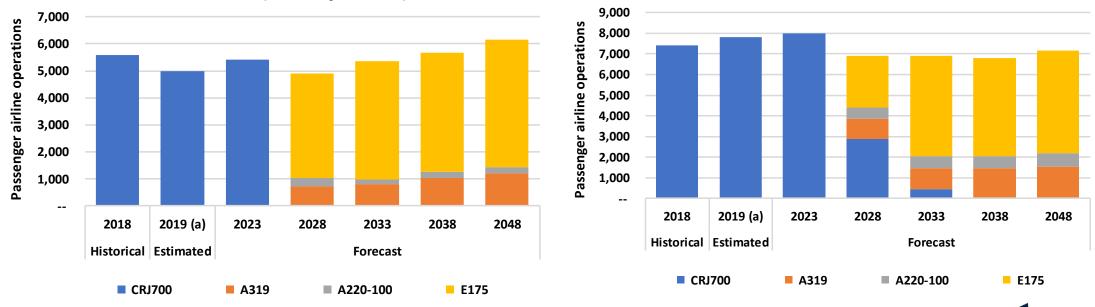
	Passengers per day each way	Derived average daily departures based on seat configuration and 70% load factor											
Month	2018	76 seats	76 seats 100 seats 125 seats 150 sea										
Jan	1,319	25	19	15	13								
Feb	1,228	23	18	14	12								
Mar	1,399	26	20	16	13								
Apr	589	11	8	7	6								
May	293	6	4	3	3								
Jun	666	13	10	8	6								
Jul	680	13	10	8	6								
Aug	870	16	12	10	8								
Sep	640	12	9	7	6								
Oct	454	9	6	5	4								
Nov	371	7	5	4	4								
Dec	839	16	12	10	8								
Total	9,349	176	134	107	89								

 Larger capacity aircraft translate into fewer departures

- Off season months such as May can't support large narrowbody service due to service by three airlines to three markets
- Peak season months can support limited small narrowbody service to certain markets


•

Note: The terms Critical Aircraft, Design Aircraft, and Critical Design Aircraft are synonymous. Sources: Federal Aviation Administration, Advisory Circular 150/5000-17, Critical Aircraft and Regular Use Determination, June

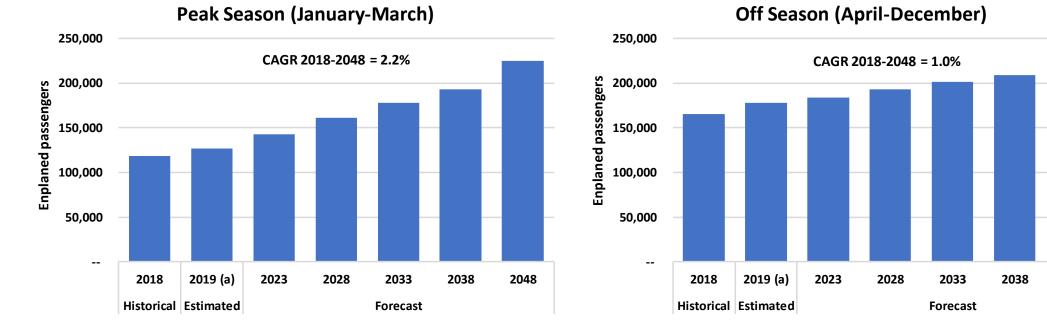

20, 2017, www.faa.gov. U.S. Department of Transportation, Schedule T100, online database, accessed September 2019.

FAA Activity Forecasts for ASE

FAA Forecasts of ASE Passenger Airline Operations by Equipment Type

- Stronger growth is forecast for peak season operations than off season
- Peak season activity levels support the increasing use of small narrowbody aircraft
- The CRJ700 aircraft remains in service longer during the off season

Off Season (April-December)



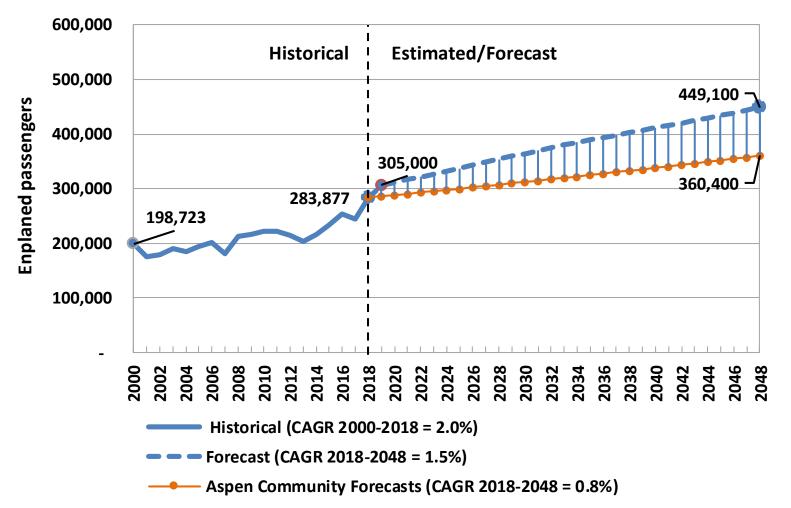
Sources: Historical—U.S. Department of Transportation, Schedule T100, online database, accessed September 2019. Forecast—LeighFisher, June 2019.

Peak Season (January-March)

FAA Unconstrained Forecasts of ASE Enplaned Passengers

ASE enplaned passengers are forecast to increase an average of 1.5% per year, with stronger growth during the peak season

2048

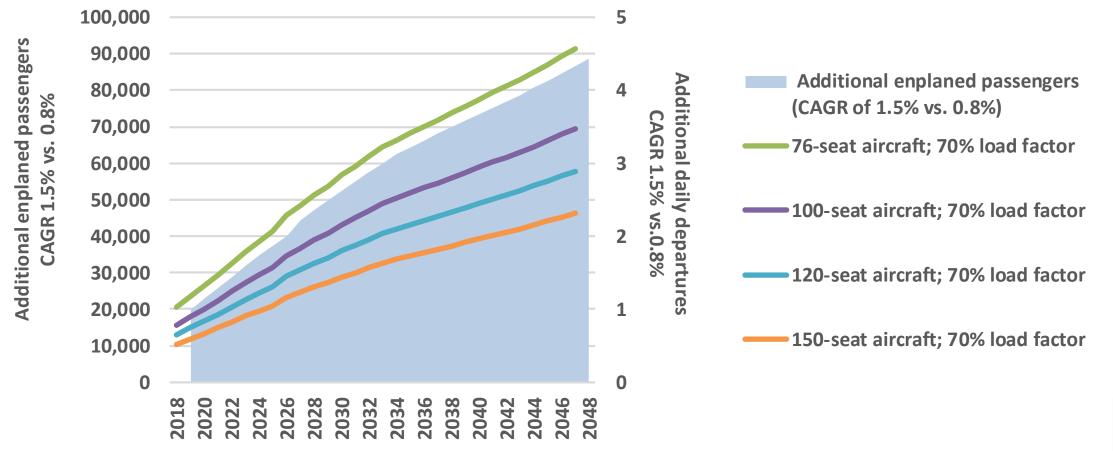

CAGR = Compound annual growth rate

Sources: Historical—U.S. Department of Transportation, Schedule T100, online database, accessed September 2019.

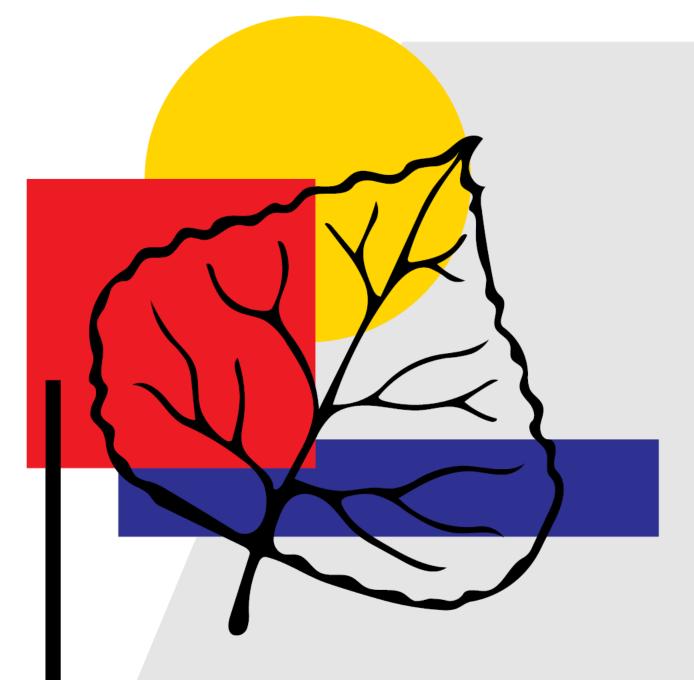
Forecast—LeighFisher, June 2019.

25

Unconstrained Forecast vs. Aspen Community Forecast



- Historical: Gain of 85,000 enplaned passengers between 2000 and 2018 (2.0% CAGR)
- Estimated: Gain of 106,000 passengers between 2000 and 2019 (2.3% CAGR)
- Unconstrained Forecast: Gain of 165,000 passengers between 2018 and 2048 (1.5% CAGR)
- Aspen Community Forecast: Gain of 76,500 passengers between 2018 and 2048 (0.8% CAGR)


Unconstrained Forecast vs. Aspen Community Forecast Additional Passengers and Daily Departures

Depending on the aircraft type, the additional enplaned passengers in the unconstrained forecast can be served with as few as 1 to 2 departures

Questions and Comments

Lighting Round and Discussion

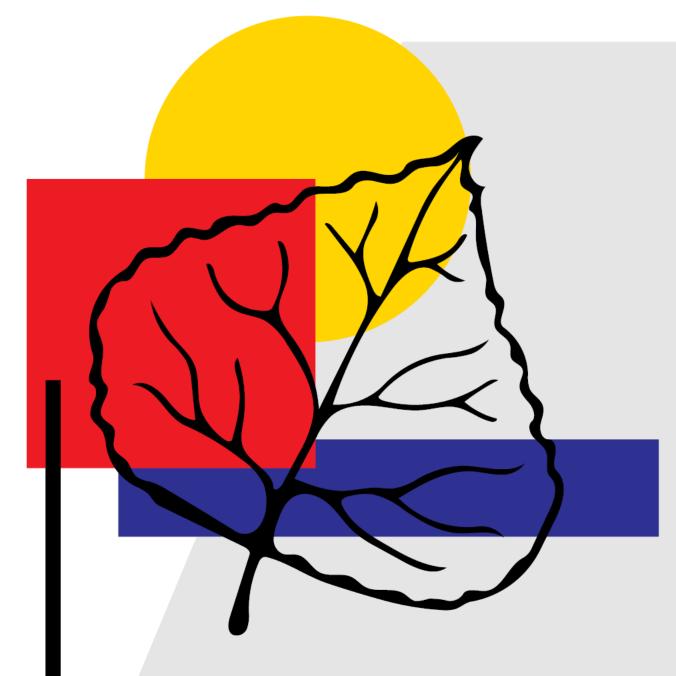
Next Steps

Meeting Schedule

Meeting III Diving Deep Part II

Meeting IV Airfield

Meeting V Report


Meeting 3 - Diving Deep Part 2: Aircraft Noise and Emissions October 2nd Aspen Meadows, Doerr-Hoiser, 4 – 7pm

Meeting 4 - Aspen Airfield: Airport Design 101, Non-Standard Conditions, Green and Carbon Neutral Goals October 16th, Pitkin County Building, Roaring Fork Room, 4 – 7

Meeting 5 – Report: Finalize and Refine Recommendations October 23rd, Aspen Police Department Building Meeting Room, 4 - 7 pm

Thank You Are we missing anything?

